Les meilleurs développeurs informatique freelances sont sur Codeur.com

Recherche développeur

 Fermé · Moins de 500 € · 10 offres · 1545 vues · 17 interactions


Détails du projet :

Coder un projet de programmation

Détails des prestations attendues :

SMA_50, EMA_20, OBV, Close Price (normalized), Daily Volume (normalized), Lagged Log Return (t-1), ATR: SEE MORE DETAILS ON THE NEXT PAGE Two targets: 1) Next-Day Percentage Return (Regression) and 2) Next-Day Direction (Up/Down Binary, Classification). Tool: pandas-ta OR ta 3) Preprocessing: Scale all input features using MinMaxScaler (to have uniform and proportional data influence). Convert the final DataFrame into the 3D array ([samples, time steps, features]) required by the LSTM. An interesting Array I am considering: ([1700, 64, 12]) 1764 trading days (approximately 7 years * 252 trading days/year) – 64 = 1700 days, 64 days look-back window (approximately 3 months * 21 trading days/month), 12 indicators Tool: sklearn.preprocessing.Min-MaxScaler and numpy reshaping 4) Model implementation: Build a Sequential model with 2-3 Stacked LSTM layers (by connecting multiple LSTM layers, the model’s predictive power is enhanced). Use a Dense output layer with a linear activation for the return magnitude prediction. (For directional sign (classification): If the predicted percentage return is positive, then the stock is predicted to go Up else the stock is predicted to go Down) Tool: tensorflow.keras 5) Training: Train the LSTM on the data. Training period: 01/01/2018 to 31/12/2022 (5 years) Testing period: 01/01/2023 to 31/12/2024 (2 years) 6) Evaluation: Use following models as baseline (for final comparison): Linear baseline, Random Forest AND XGBoost Compare both models using RMSE/MAE (for magnitude) and Accuracy/

Détails des exigences :

SMA_50, EMA_20, OBV, Close Price (normalized), Daily Volume (normalized), Lagged Log Return (t-1), ATR: SEE MORE DETAILS ON THE NEXT PAGE Two targets: 1) Next-Day Percentage Return (Regression) and 2) Next-Day Direction (Up/Down Binary, Classification). Tool: pandas-ta OR ta 3) Preprocessing: Scale all input features using MinMaxScaler (to have uniform and proportional data influence). Convert the final DataFrame into the 3D array ([samples, time steps, features]) required by the LSTM. An interesting Array I am considering: ([1700, 64, 12]) 1764 trading days (approximately 7 years * 252 trading days/year) – 64 = 1700 days, 64 days look-back window (approximately 3 months * 21 trading days/month), 12 indicators Tool: sklearn.preprocessing.Min-MaxScaler and numpy reshaping 4) Model implementation: Build a Sequential model with 2-3 Stacked LSTM layers (by connecting multiple LSTM layers, the model’s predictive power is enhanced). Use a Dense output layer with a linear activation for the return magnitude prediction. (For directional sign (classification): If the predicted percentage return is positive, then the stock is predicted to go Up else the stock is predicted to go Down) Tool: tensorflow.keras 5) Training: Train the LSTM on the data. Training period: 01/01/2018 to 31/12/2022 (5 years) Testing period: 01/01/2023 to 31/12/2024 (2 years) 6) Evaluation: Use following models as baseline (for final comparison): Linear baseline, Random Forest AND XGBoost Compare both models using RMSE/MAE (for magnitude) and Accuracy/

Budget indicatif : Moins de 500 €

Publication : 16 novembre 2025 à 15h14

Profils recherchés : Développeur spécifique freelance , Développeur Python freelance

Le profil du client est reservé aux prestataires abonnés

Créer un compte

10 freelances ont répondu à ce projet

8 propositions de devis en moins de 2h

Patrick Zermatten Développeur blockchain
Roger_Clanget Agence de développement mobile
Jordan Baron Agence web
Julien Thomas Agence web
Michaël Baron Agence de développement mobile
Larbi Touati Chef de projet
Rahmad Abuzar Développeur React
+3

Montant moyen des devis proposés : 450 €

Estimation du délai : 3 jours

Publier un projet similaire

Chaque jour, des centaines de clients utilisent Codeur.com pour trouver un prestataire. Créez votre compte dès maintenant, remplissez votre profil et trouvez de nouveaux clients.

Trouver des nouveaux clients